IMPLEMENTATION OF SUSTAINABLE ENERGY TECHNOLOGIES IN DEVELOPING COUNTRIES – BEST PRACTICES AND LESSONS LEARNED

L3EAP – “Renewable Energy & energy efficiency in Small Island Developing states and beyond”
Hamburg, Dec 7th 2015

Dr. Jens Eiko Birkholz
Head of off-Grid sales
SMA Sunbelt Energy GmbH
IMPORTANT LEGAL NOTICE

This presentation does not constitute or form part of, and should not be construed as, an offer or invitation to subscribe for, underwrite or otherwise acquire, any securities of SMA Solar Technology AG (the "Company") or any present or future subsidiary of the Company (together with the Company, the "SMA Group") nor should it or any part of it form the basis of, or be relied upon in connection with, any contract to purchase or subscribe for any securities in the Company or any member of the SMA Group or commitment whatsoever.

All information contained herein has been carefully prepared. Nevertheless, we do not guarantee its accuracy or completeness and nothing herein shall be construed to be a representation of such guarantee.

The information contained in this presentation is subject to amendment, revision and updating. Certain statements contained in this forward-looking statements presentation may be statements of future expectations and other forward that are based on the management's current views and assumptions and involve known and unknown risks and uncertainties. Actual results, performance or events may differ materially from those in such statements as a result of, among others, factors, changing business or other market conditions and the prospects for growth anticipated by the management of the Company. These and other factors could adversely affect the outcome and financial effects of the plans and events described herein. The Company does not undertake any obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise. You should not place undue reliance on forward-looking statements which speak only as of the date of this presentation.

This presentation is for information purposes only and may not be further distributed or passed on to any party which is not the addressee of this presentation. No part of this presentation must be copied, reproduced or cited by the addressees hereof other than for the purpose for which it has been provided to the addressee.

This document is not an offer of securities for sale in the United States of America. Securities may not be offered or sold in the United States of America absent registration or an exemption from registration under the U.S. Securities Act of 1933 as amended.
MOTIVATION: WHY DO WE TALK ABOUT RENEWABLES INTEGRATION?

Diesel Gensets are a common power supply in developing countries without sufficient grid infrastructure.

The cost advantage of PV-Diesel hybrid systems compared to conventional Diesel Gensets will become even more dominant in the future!

Source: SMA
INTRODUCTION TO SMA GROUP

Global market leader for PV inverters, > 40 GW cumulated installed base
- Founded in 1981
- > 800 Mio. € revenue in 2014
- > 4000 employees globally
- 20 subsidiaries worldwide

SMA Sunbelt Energy GmbH is the Off-Grid/Hybrid expert within the SMA group.

1: Engineering, Procurement, Construction Management; 2: Operation and Maintenance together with local subcontractors
AGENDA

1. Renewable integration in developing countries
 - Technical solutions
 - Best practice and lessons learned
 - Tokelau: 100% integration of solar PV
VAST SOLAR RESOURCES MEET HIGH DIESEL PRICES

Focus markets
- Caribbean
- Indonesia/Malaysia
- Sub-saharan Africa
- Central America
- South America
- Australia

Annual global solar irradiation

Worldwide diesel prices

Source: SMA
There are many different applications for PV-diesel hybrid systems

Focus of this presentation

- Remote electrification (islands) (e.g. Caribbean or Oceania)
- Tourism (e.g. hotels, resorts)
- Utilities/IPP (in off-grid/weak-grid regions)
- Real estate (e.g. offices, warehouses)
- Military (e.g. off-camps, training facilities, military base power plants)
- Rural electrification (in off-grid/weak-grid regions)
- Heavy industries (e.g. mining, oil & gas)
- Big Agriculture (e.g. irrigation systems, farms)
- Remote hospitals (in off-grid/weak-grid regions)
- Remote industries (in off-grid/weak-grid regions)
- Telecom industries and remote pumps (in off-grid/weak-grid regions)
- Rental power

Source: SMA
AGENDA

1. Renewable integration in developing countries
2. Technical solutions
3. Best practice and lessons learned
4. Tokelau: 100% integration of solar PV
DEPENDING ON APPLICATION, SYSTEM SIZE AND SYSTEM TOPOLOGY, WE FIND TWO MAIN CASES

Genset builds up the grid (PV as “slave”)

- Several 100kW – multi MW
- Reducing OPEX (fuel saving)
- PPA structures

Battery inverter builds up the grid (PV + storage as „master”, Genset supporting unit)

- Up to several 100 kW
- Rural electrif./reduction of power outages
- Governmental tenders + owned assets

Source: SMA
INDUSTRIAL LOADS IN REMOTE AREAS: TYPICALLY SUPPLIED BY CONVENTIONAL GENSET SYSTEMS

Powerhouse
Includes main busbars, genset controllers, etc.

Genset System
The main component in the electricity supply system

Industrial Load
e.g. Mining facility, cement factory, metal works
ADDING PHOTOVOLTAICS IS THE FIRST STEP TOWARDS A FUTURE-PROOF SYSTEM...

1. Balance of System (e.g. cabling, module racks, etc)
Source: SMA

PV inverter
The heart of SMA’s solution for hybrid systems

PV Modules/BOS
All module technologies supported

Genset System
The main component in the electricity supply system

Industrial Load
e.g. Mining facility, cement factory, metal works

Powerhouse
Includes main busbars, genset controllers, etc.
SMART COMMUNICATION BETWEEN GENSET AND PV: MANDATORY TO LEVERAGE THE FULL HYBRID POTENTIAL

1. Balance of System (e.g. cabling, module racks, etc)
2. Data Acquisition Module
 Measures the actual load both active and reactive

PV inverter
The heart of SMA’s solution for hybrid systems

PV Modules/BOS1
All module technologies supported

Interface Module
Acts as a data concentrator and data logging device for Sunny Tripower inverters

PV Main Controller Module
Monitors genset status and computes maximum allowed PV power

Powerhouse
Includes main busbars, genset controllers, etc.

Industrial Load
e.g. Mining facility, cement factory, metal works

Genset System
The main component in the electricity supply system

1. Source: SMA
INTEGRATION OF STORAGE SMOOTHENS THE ELECTRICITY SUPPLY AND INCREASES PV PENETRATION

PV Modules/BOS: All module technologies supported

PV inverter: The heart of SMA’s solution for hybrid systems

Interface Module: Acts as a data concentrator and data logging device for Sunny Tripower inverters

Data Acquisition Module: Measures the actual load both active and reactive

PV Main Controller Module: Monitors genset status and computes maximum allowed PV power

Battery Inverter: (optional, for increased PV penetration)

Industrial Load: e.g. Mining facility, cement factory, metal works

Powerhouse: Includes main busbars, genset controllers, etc.

Genset System: The main component in the electricity supply system

1. Balance of System (e.g. cabling, module racks, etc)

Source: SMA
OFF-GRID AND BACKUP SYSTEMS WITH GRID-BUILDING INVERTERS

Backup System and Solar Power

- Battery inverter with grid-forming capability (in case of public grid failure)
- PV array and PV inverter supply the stand-alone grid (AC-coupled) with electricity
- Battery system for energy storage

Source: SMA
APPLICATION EXAMPLES – „PEAK SHAVING“

- Load > PV power
- Grid available

Many electricity tariffs charge extra cost for peak supply!

Source: SMA
Net Metering very attractive under many electricity tariff schemes!

Source: SMA
APPLICATION EXAMPLES – „BACKUP CASE“

- Load < PV power or vice versa
- Grid not available

Avoidance of power outages help bringing down opportunity cost significantly!

Source: SMA
AGENDA

1. Renewable integration in developing countries

2. Technical solutions

3. Best practice and lessons learned

4. Tokelau: 100% integration of solar PV
SMOOTH INTERACTION BETWEEN PV, GRID AND GENSET IS MANDATORY

1. Sunrise
2. Drop of PV power (clouds)
3. Grid failure, start of genset
4. PV covers load changes
5. Genset compensate cloud effect
6. Grid back again, PV synchronizes

Source: SMA project example
MAKE SURE YOUR EQUIPMENT MEETS HARSH ENVIRONMENT REQUIREMENTS – EXAMPLE IP CLASS

„I don’t need a fancy IP 54 device. I am fine with IP 20¹ or 21².”

„OK, but what does IP 20/21 mean?”

IP X Y

1. Digit: Solid particle protection

<table>
<thead>
<tr>
<th>Level</th>
<th>Object size protected against</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>> 50 mm</td>
</tr>
<tr>
<td>2</td>
<td>> 12.5 mm</td>
</tr>
<tr>
<td>3</td>
<td>> 2.5 mm</td>
</tr>
<tr>
<td>4</td>
<td>> 1 mm</td>
</tr>
<tr>
<td>5</td>
<td>Dust protected</td>
</tr>
</tbody>
</table>

2. Digit: Liquid ingress protection

<table>
<thead>
<tr>
<th>Level</th>
<th>Protected against</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>Dripping water</td>
</tr>
<tr>
<td>2</td>
<td>Dripping water @15° tilt angle</td>
</tr>
<tr>
<td>3</td>
<td>Spraying water</td>
</tr>
<tr>
<td>4</td>
<td>Splashing of water</td>
</tr>
</tbody>
</table>

Equivalent to:

- 1 litre of rainfall per minute per m²
- 3 litres of rainfall per minute per m²
- 0.7 litres/minute @ 100 kPA
- 10 litres/minute @ 100 kPA

“The IP Code, International Protection Marking, IEC standard 60529, classifies and rates the degree of protection provided against intrusion (body parts such as hands and fingers), dust, accidental contact, and water by mechanical casings and electrical enclosures. It is published by the International Electrotechnical Commission (IEC).”

Source: IEC, SMA
Best practice

IP PROTECTION CLASS – IMPORTANT IN HARSH ENVIRONMENTS

“Would your IP 21 inverter have survived this?”

“OK, but my installation is inhouse.”

“Well, good luck then...”

Source: SMA reference examples
Things to Remember for Off-Grid Systems and Renewable Integration

<table>
<thead>
<tr>
<th>Fact</th>
<th>Consequence / ToDo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-Grids are not as stable as large public grids</td>
<td>Smooth interaction/communication between loads, renewables, and backup source (e.g. Diesel Genset) need to be secured</td>
</tr>
<tr>
<td>Most Off-Grid systems are in harsh environments (dust, salt, water, temperature...)</td>
<td>High IP protection class for all electrical devices (+ over-voltage and short-circuit protection...)</td>
</tr>
<tr>
<td>Off-Grid systems may be complex; e.g. customers sometimes ask for a combination Wind+PV+Hydro+Storage</td>
<td>Reduce complexity: start with integration of just one renewable energy source and subsequently expand the system, if required</td>
</tr>
<tr>
<td>Consumption behavior may change</td>
<td>Go for a scalable solution</td>
</tr>
<tr>
<td>Off-Grid systems are remote (by definition)</td>
<td>Collaborate with local partners for Service and Maintenance</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
AGENDA

1. Renewable integration in developing countries
2. Technical solutions
3. Best practice and lessons learned
4. Tokelau: 100% integration of solar PV
Tokelau is first country globally with 100% solar PV supply!

- 1 MW PV (4032 PV modules, 205 SMA Sunny Boy Inverters)
- 8 MWh storage system (1,344 batteries, 93 SMA Sunny Islands + 121 Sunny Island Chargers)
- Zero CO₂ emissions!
THANK YOU FOR YOUR ATTENTION!

Contact for further questions

Dr. Jens Eiko Birkholz
Head of Off-Grid Sales
SMA Sunbelt Energy GmbH

E-Mail: JensEiko.Birkholz@sma.de
Phone: +49 561 9522 421333
Mobile: +49 151 4383 2533